Modeling the fMRI Signal via Hierarchical Clustered Hidden Process Models
نویسندگان
چکیده
Machine Learning techniques have been used quite widely for the task of predicting cognitive processes from fMRI data. However, these models do not describe well the fMRI signal when it is generated by multiple cognitive processes that are simultaneously active. In this paper we consider the problem of accurately modeling the fMRI signal of a human subject who is performing a task involving multiple concurrent cognitive processes. We present a Hierarchical Clustering extension of Hidden Process Models which, by taking advantage of automatically discovered similarities in the activation among neighboring voxels, achieves significantly better performance than standard generative models in terms of Average Log Likelihood.
منابع مشابه
Hierarchical Clustered Hidden Process Models
Machine Learning techniques have been used quite widely for the task of predicting cognitive processes from fMRI data. However, these models do not describe well the fMRI signal when it is generated by multiple cognitive processes that are simultaneously active. In this paper we consider the problem of accurately modeling the fMRI signal of a human subject who is performing a task involving mul...
متن کاملModeling fMRI data generated by overlapping cognitive processes with unknown onsets using Hidden Process Models
We present a new method for modeling fMRI time series data called Hidden Process Models (HPMs). Like several earlier models for fMRI analysis, Hidden Process Models assume that the observed data is generated by a sequence of underlying mental processes that may be triggered by stimuli. HPMs go beyond these earlier models by allowing for processes whose timing may be unknown, and that might not ...
متن کاملRobust multiplicative video watermarking using statistical modeling
The present paper is intended to present a robust multiplicative video watermarking scheme. In this regard, the video signal is segmented into 3-D blocks like cubes, and then, the 3-D wavelet transform is applied to each block. The low frequency components of the wavelet coefficients are then used for data embedding to make the process robust against both malicious and unintentional attacks. Th...
متن کاملLearning Hierarchical Partially Observable Markov Decision Process Models for Robot Navigation
| We propose and investigate a general framework for hierarchical modeling of partially observable environments, such as oÆce buildings, using Hierarchical Hidden Markov Models (HHMMs). Our main goal is to explore hierarchical modeling as a basis for designing more eÆcient methods for model construction and useage. As a case study we focus on indoor robot navigation and show how this framework ...
متن کاملEpigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.
Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AMIA ... Annual Symposium proceedings. AMIA Symposium
دوره شماره
صفحات -
تاریخ انتشار 2007